# Cassini (Cassini-Soldner)¶

Although the Cassini projection has been largely replaced by the Transverse Mercator, it is still in limited use outside the United States and was one of the major topographic mapping projections until the early 20th century.

 Classification Transverse and oblique cylindrical Available forms Forward and inverse, Spherical and ellipsoidal Defined area Global, but best used near the central meridian with long, narrow areas Alias cass Domain 2D Input type Geodetic coordinates Output type Projected coordinates

## Usage¶

There has been little usage of the spherical version of the Cassini, but the ellipsoidal Cassini-Soldner version was adopted by the Ordnance Survey for the official survey of Great Britain during the second half of the 19th century . Many of these maps were prepared at a scale of 1:2,500. The Cassini-Soldner was also used for the detailed mapping of many German states during the same period.

$echo 0.17453293 -1.08210414 | proj +proj=cass +lat_0=10.44166666666667 +lon_0=-61.33333333333334 +x_0=86501.46392051999 +y_0=65379.0134283 +a=6378293.645208759 +b=6356617.987679838 +to_meter=0.201166195164 66644.94 82536.22  Example using EPSG 3068 (Soldner Berlin): $ echo 13.5 52.4 | proj +proj=cass +lat_0=52.41864827777778 +lon_0=13.62720366666667 +x_0=40000 +y_0=10000 +ellps=bessel +units=m
31343.05    7932.76


## Options¶

Note

All options are optional for the Cassini projection.

+lat_0=<value>

Latitude of projection center.

Defaults to 0.0.

+lon_0=<value>

Longitude of projection center.

Defaults to 0.0.

+x_0=<value>

False easting.

Defaults to 0.0.

+y_0=<value>

False northing.

Defaults to 0.0.

+ellps=<value>

See proj -le for a list of available ellipsoids.

Defaults to “GRS80”.

+R=<value>

Radius of the sphere given in meters. If used in conjunction with +ellps, +R takes precedence.

+hyperbolic

Use modified form of the standard Cassini-Soldner projection known as the Hyperbolic Cassini-Soldner. This is used in particular for the “Vanua Levu Grid” of the island of Vanua Levu, Fiji (EPSG:3139)

## Mathematical definition¶

The formulas describing the Cassini projection are taken from .

$$\phi_0$$ is the latitude of origin that match the center of the map (default to 0). It can be set with +lat_0.

### Spherical form¶

#### Forward projection¶

$x = \arcsin(\cos(\phi) \sin(\lambda))$
$y = \arctan2(\tan(\phi), \cos(\lambda)) - \phi_0$

#### Inverse projection¶

$\phi = \arcsin(\sin(y+\phi_0) \cos(x))$
$\lambda = \arctan2(\tan(x), \cos(y+\phi_0))$

### Ellipsoidal form¶

#### Forward projection¶

$N = (1 - e^2 \sin^2(\phi))^{-1/2}$
$T = \tan^2(\phi)$
$A = \lambda \cos(\phi)$
$C = \frac{e^2}{1-e^2} cos^2(\phi)$
$x = N ( A - T \frac{A^3}{6} - (8-T+8C)T\frac{A^5}{120})$
$y = M(\phi) - M(\phi_0) + N \tan(\phi)(\frac{A^2}{2} + (5-T+6C)\frac{A^4}{24})$

and M() is the meridional distance function.

#### Inverse projection¶

$\phi' = M^{-1}(M(\phi_0)+y)$

if $$\phi' = \frac{\pi}{2}$$ then $$\phi=\phi'$$ and $$\lambda=0$$

otherwise evaluate T and N above using $$\phi'$$ and

$R = (1 - e^2)(1 - e^2 sin^2 \phi')^{-3/2}$
$D = x/N$
$\phi = \phi' - \tan \phi' \frac{N}{R}(\frac{D^2}{2}-(1+3T)\frac{D^4}{24})$
$\lambda = \frac{(D - T\frac{D^3}{3} + (1+3T)T\frac{D^5}{15})}{\cos \phi'}$