References

Altamimi2002

Altamimi, Z., Sillard, P., and Boucher, C. ITRF2000: a new release of the International Terrestrial Reference Frame for earth science applications. Journal of Geophysical Research: Solid Earth, 2002. doi:10.1029/2001JB000561.

Bessel1825

Bessel, F. W. The calculation of longitude and latitude from geodesic measurements. Astronomische Nachrichten, 4(86):241–254, 1825. arXiv:0908.1824.

CalabrettaGreisen2002

Calabretta, M. R. and Greisen, E. W. Representations of celestial coordinates in FITS. Astronomy & Astrophysics, 395(3):1077–1122, 2002. doi:10.1051/0004-6361:20021327.

ChanONeil1975

Chan, F. K. and O’Neill, E. M. Feasibility study of a quadrilateralized spherical cube earth data base. Tech. Rep. EPRF 2-75 (CSC), Computer Sciences Corporation, System Sciences Division, Silver Spring, Md, 1975. URL: https://archive.org/details/ADA010232.

Danielsen1989

Danielsen, J. The area under the geodesic. Survey Review, 30(232):61–66, 1989. doi:10.1179/sre.1989.30.232.61.

Deakin2004

Deakin, R. E. The standard and abridged Molodensky coordinate transformation formulae. Technical Report, Department of Mathematical and Geospatial Sciences, RMIT University, Melborne, Australia, 2004. URL: http://www.mygeodesy.id.au/documents/Molodensky%20V2.pdf.

EberHewitt1979

Eber, L. E. and Hewitt, R. P. Conversion algorithms for the CalCOFI station grid. California Cooperative Oceanic Fisheries Investigations Reports, 20:135–137, 1979. URL: http://www.calcofi.org/publications/calcofireports/v20/Vol_20_Eber___Hewitt.pdf.

Evenden1995

Evenden, G. I. Cartographic Projection Procedures for the UNIX Environment — A User’s Manual. 1995. URL: https://pubs.usgs.gov/of/1990/of90-284/ofr90-284.pdf.

Evenden2005

Evenden, G. I. libproj4: A Comprehensive Library of Cartographic Projection Functions (Preliminary Draft). 2005. URL: https://github.com/OSGeo/PROJ/blob/master/docs/old/libproj.pdf.

EversKnudsen2017

Evers, K. and Knudsen, T. Transformation pipelines for PROJ.4. In FIG Working Week 2017 Proceedings. Helsinki, Finland, 2017. URL: http://www.fig.net/resources/proceedings/fig_proceedings/fig2017/papers/iss6b/ISS6B_evers_knudsen_9156.pdf.

Helmert1880

Helmert, F. R. Mathematical and Physical Theories of Higher Geodesy. Volume 1. Teubner, Leipzig, 1880. doi:10.5281/zenodo.32050.

Hensley2002

Hensley, S., Chapin, E., Freedman, A., and Michel, T. Improved processing of AIRSAR data based on the GeoSAR processor. In AIRSAR Earth Science and Application Workshop. Pasadena, California, 2002. Jet Propulsion Laboratory. URL: https://airsar.jpl.nasa.gov/documents/workshop2002/papers/T3.pdf.

Hakli2016

Häkli, P., Lidberg, M., Jivall, L., Nørbech, T., Tangen, O., Weber, M., Pihlak, P., Aleksejenko, I., and Paršeliunas, E. The NKG2008 GPS campaign – final transformation results and a new common Nordic reference frame. Journal of Geodetic Science, 6(1):1–33, 2016. doi:10.1515/jogs-2016-0001.

IOGP2018

IOGP. Geomatics guidance note 7, part 2: coordinate conversions & transformations including formulas. IOGP Publication 373-7-2, International Association For Oil And Gas Producers, 2018. URL: https://www.iogp.org/bookstore/product/coordinate-conversions-and-transformation-including-formulas/.

ISO19111

ISO. Geographic information – Referencing by coordinates. Standard, International Organization for Standardization, Geneva, CH, January 2019. URL: http://docs.opengeospatial.org/as/18-005r4/18-005r4.html.

Jenny2015

Jenny, B., Šavrič, B., and Patterson, T. A compromise aspect-adaptive cylindrical projection for world maps. International Journal of Geographical Information Science, 29(6):935–952, 2015. URL: http://www.cartography.oregonstate.edu/pdf/2015_Jenny_etal_ACompromiseAspect-adaptiveCylindricalProjectionForWorldMaps.pdf, doi:10.1080/13658816.2014.997734.

Karney2011

Karney, C. F. F. Geodesics on an ellipsoid of revolution. ArXiv e-prints, 2011. arXiv:1102.1215.

Karney2013

Karney, C. F. F. Algorithms for geodesics. Journal of Geodesy, 87(1):43–55, 2013. doi:10.1007/s00190-012-0578-z.

Komsta2016

Komsta, Ł. ATPOL geobotanical grid revisited – a proposal of coordinate conversion algorithms. Annales UMCS Sectio E Agricultura, 71(1):31–37, 2016.

LambersKolb2012

Lambers, M. and Kolb, A. Ellipsoidal cube maps for accurate rendering of planetary-scale terrain data. In Bregler, C., Sander, P., and Wimmer, M., editors, Pacific Graphics Short Papers. The Eurographics Association, 2012. doi:10.2312/PE/PG/PG2012short/005-010.

ONeilLaubscher1976

O’Neill, E. M. and Laubscher, R. E. Extended studies of a quadrilateralized spherical cube earth data base. Tech. Rep. EPRF 3-76 (CSC), Computer Sciences Corporation, System Sciences Division, Silver Spring, Md, 1976. URL: https://archive.org/details/DTIC_ADA026294.

Patterson2014

Patterson, T., Šavrič, B., and Jenny, B. Introducing the Patterson cylindrical projection. Cartographic Perspectives, 2014. doi:10.14714/CP78.1270.

Poder1998

Poder, K. and Engsager, K. Some conformal mappings and transformations for geodesy and topographic cartography. National Survey and Cadastre Publications, National Survey and Cadastre, Copenhagen, Denmark, 1998.

Rittri2012

Rittri, M. New omerc approximations of Denmark System 34. e-mail, 2012. URL: https://lists.osgeo.org/pipermail/proj/2012-June/005926.html.

Ruffhead2016

Ruffhead, A. C. Introduction to multiple regression equations in datum transformations and their reversibility. Survey Review, 50(358):82–90, 2016. doi:10.1080/00396265.2016.1244143.

Snyder1987

Snyder, J. P. Map projections — A working manual. Professional Paper 1395, U.S. Geological Survey, 1987. doi:10.3133/pp1395.

Snyder1988

Snyder, J. P. New equal-area map projections for noncircular regions. The American Cartographer, 15(4):341–356, 1988. doi:10.1559/152304088783886784.

Snyder1993

Snyder, J. P. Flattening the Earth. University of Chicago Press, 1993.

Steers1970

Steers, J. A. An introduction to the study of map projections. University of London Press, 15th edition, 1970.

Tobler2018

Tobler, W. A new companion for Mercator. Cartography and Geographic Information Science, 45(3):284–285, 2018. doi:10.1080/15230406.2017.1308837.

Verey2017

Verey, M. Theoretical analysis and practical consequences of adopting a model ATPOL grid as a conical projection defining the conversion of plane coordinates to the WGS 84 ellipsoid. Fragmenta Floristica et Geobotanica Polonica, 24(2):469–488, 2017. URL: http://bomax.botany.pl/pubs-new/#article-4279.

Vincenty1975

Vincenty, T. Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Survey Review, 23(176):88–93, 1975. doi:10.1179/sre.1975.23.176.88.

WeberMoore2013

Weber, E. D. and Moore, T. J. Corrected conversion algorithms for the CalCOFI station grid and their implementation in several computer languages. California Cooperative Oceanic Fisheries Investigations Reports, 54:1–10, 2013. URL: http://calcofi.org/publications/calcofireports/v54/Vol_54_Weber.pdf.

Zajac1978

Zajaç, A. Atlas of distribution of vascular plants in Poland (ATPOL). Taxon, 27(5/6):481–484, 1978. doi:10.2307/1219899.

Savric2015

Šavrič, B., Patterson, T., and Jenny, B. The Natural Earth II world map projection. International Journal of Cartography, 1(2):123–133, 2015. URL: https://www.researchgate.net/publication/290447301_The_Natural_Earth_II_world_map_projection, doi:10.1080/23729333.2015.1093312.

Savric2018

Šavrič, B., Patterson, T., and Jenny, B. The Equal Earth map projection. International Journal of Geographical Information Science, 33(3):454–465, 2018. URL: https://www.researchgate.net/publication/326879978_The_Equal_Earth_map_projection, doi:10.1080/13658816.2018.1504949.