Helmert transform
The Helmert transformation changes coordinates from one reference frame to another by means of 3-, 4-and 7-parameter shifts, or one of their 6-, 8- and 14-parameter kinematic counterparts.
Alias |
helmert |
Domain |
2D, 3D and 4D |
Input type |
Cartesian coordinates (spatial), decimalyears (temporal). |
Output type |
Cartesian coordinates (spatial), decimalyears (temporal). |
Input type |
Cartesian coordinates |
Output type |
Cartesian coordinates |
The Helmert transform, in all its various incarnations, is used to perform reference frame shifts. The transformation operates in cartesian space. It can be used to transform planar coordinates from one datum to another, transform 3D cartesian coordinates from one static reference frame to another or it can be used to do fully kinematic transformations from global reference frames to local static frames.
All of the parameters described in the table above are marked as optional. This is true as long as at least one parameter is defined in the setup of the transformation. The behavior of the transformation depends on which parameters are used in the setup. For instance, if a rate of change parameter is specified a kinematic version of the transformation is used.
The kinematic transformations require an observation time of the coordinate, as well as a central epoch for the transformation. The latter is usually documented alongside the rest of the transformation parameters for a given transformation. The central epoch is controlled with the parameter t_epoch. The observation time is given as part of the coordinate when using PROJ's 4D-functionality.
Examples
Transforming coordinates from NAD72 to NAD83 using the 4 parameter 2D Helmert:
proj=helmert convention=coordinate_frame x=-9597.3572 y=.6112 \
s=0.304794780637 theta=-1.244048
Simplified transformations from ITRF2008/IGS08 to ETRS89 using 7 parameters:
proj=helmert convention=coordinate_frame x=0.67678 y=0.65495 z=-0.52827
rx=-0.022742 ry=0.012667 rz=0.022704 s=-0.01070
Transformation from ITRF2000 to ITRF93 using 15 parameters:
proj=helmert convention=position_vector
x=0.0127 y=0.0065 z=-0.0209 s=0.00195
dx=-0.0029 dy=-0.0002 dz=-0.0006 ds=0.00001
rx=-0.00039 ry=0.00080 rz=-0.00114
drx=-0.00011 dry=-0.00019 drz=0.00007
t_epoch=1988.0
Parameters
Note
All parameters are optional but at least one should be used, otherwise the operation will return the coordinates unchanged.
- +convention=coordinate_frame/position_vector
Indicates the convention to express the rotational terms when a 3D-Helmert / 7-parameter more transform is involved. As soon as a rotational parameter is specified (one of
rx
,ry
,rz
,drx
,dry
,drz
),convention
is required.The two conventions are equally popular and a frequent source of confusion. The coordinate frame convention is also described as an clockwise rotation of the coordinate frame. It corresponds to EPSG method code 1032 (in the geocentric domain) or 9607 (in the geographic domain) The position vector convention is also described as an anticlockwise (counter-clockwise) rotation of the coordinate frame. It corresponds to as EPSG method code 1033 (in the geocentric domain) or 9606 (in the geographic domain).
This parameter is ignored when only a 3-parameter (translation terms only:
x
,y
,z
) , 4-parameter (3-parameter andtheta
) or 6-parameter (3-parameter and their derivative terms) is used.The result obtained with parameters specified in a given convention can be obtained in the other convention by negating the rotational parameters (
rx
,ry
,rz
,drx
,dry
,drz
)Note
This parameter obsoletes
transpose
which was present in PROJ 5.0 and 5.1, and is forbidden starting with PROJ 5.2
- +x=<value>
Translation of the x-axis given in meters.
- +y=<value>
Translation of the y-axis given in meters.
- +z=<value>
Translation of the z-axis given in meters.
- +s=<value>
Scale factor given in ppm.
- +rx=<value>
X-axis rotation in the 3D Helmert given arc seconds.
- +ry=<value>
Y-axis rotation in the 3D Helmert given in arc seconds.
- +rz=<value>
Z-axis rotation in the 3D Helmert given in arc seconds.
- +theta=<value>
Rotation angle in the 2D Helmert given in arc seconds.
- +dx=<value>
Translation rate of the x-axis given in m/year.
- +dy=<value>
Translation rate of the y-axis given in m/year.
- +dz=<value>
Translation rate of the z-axis given in m/year.
- +ds=<value>
Scale rate factor given in ppm/year.
- +drx=<value>
Rotation rate of the x-axis given in arc seconds/year.
- +dry=<value>
Rotation rate of the y-axis given in arc seconds/year.
- +drz=<value>
Rotation rate of the y-axis given in arc seconds/year.
- +t_epoch=<value>
Central epoch of transformation given in decimalyear. Only used spatiotemporal transformations.
Mathematical description
In the notation used below, \(\hat{P}\) is the rate of change of a given transformation parameter \(P\). \(\dot{P}\) is the kinematically adjusted version of \(P\), described by
where \(t\) is the observation time of the coordinate and \(t_{central}\) is the central epoch of the transformation. Equation (1) can be used to propagate all transformation parameters in time.
Superscripts of vectors denote the reference frame the coordinates in the vector belong to.
2D Helmert
The simplest version of the Helmert transform is the 2D case. In the 2-dimensional case only the horizontal coordinates are changed. The coordinates can be translated, rotated and scaled. Translation is controlled with the x and y parameters. The rotation is determined by theta and the scale is controlled with the s parameters.
Note
The scaling parameter s is unitless for the 2D Helmert, as opposed to the 3D version where the scaling parameter is given in units of ppm.
Mathematically the 2D Helmert is described as:
(2) can be extended to a time-varying kinematic version by adjusting the parameters with (1) to (2), which yields the kinematic 2D Helmert transform:
All parameters in (3) are determined by the use of (1), which applies the rate of change to each individual parameter for a given timespan between \(t\) and \(t_{central}\).
3D Helmert
The general form of the 3D Helmert is
Where \(T\) is a vector consisting of the three translation parameters, \(s\) is the scaling factor and \(\mathbf{R}\) is a rotation matrix. \(V^A\) and \(V^B\) are coordinate vectors, with \(V^A\) being the input coordinate and \(V^B\) is the output coordinate.
In the Position Vector convention, we define \(R_x = radians \left( rx \right)\), \(R_z = radians \left( ry \right)\) and \(R_z = radians \left( rz \right)\)
In the Coordinate Frame convention, \(R_x = - radians \left( rx \right)\), \(R_z = - radians \left( ry \right)\) and \(R_z = - radians \left( rz \right)\)
The rotation matrix is composed of three rotation matrices, one for each axis.
The three rotation matrices can be combined in one:
For \(\mathbf{R}\), this yields:
Using the small angle approximation the rotation matrix can be simplified to
Which allow us to express the most common version of the Helmert transform, using the approximated rotation matrix:
If the rotation matrix is transposed, or the sign of the rotation terms negated,
the rotational part of the transformation is effectively reversed.
This is what happens when switching between the 2 conventions position_vector
and coordinate_frame
Applying (1) we get the kinematic version of the approximated 3D Helmert:
The Helmert transformation can be applied without using the rotation parameters, in which case it becomes a simple translation of the origin of the coordinate system. When using the Helmert in this version equation (4) simplifies to:
That after application of (1) has the following kinematic counterpart: