References¶
- Altamimi2002
Altamimi, Z., Sillard, P., and Boucher, C. ITRF2000: a new release of the International Terrestrial Reference Frame for earth science applications. Journal of Geophysical Research: Solid Earth, 2002. doi:10.1029/2001JB000561.
- Bessel1825
Bessel, F. W. The calculation of longitude and latitude from geodesic measurements. Astronomische Nachrichten, 4(86):241–254, 1825. arXiv:0908.1824.
- CalabrettaGreisen2002
Calabretta, M. R. and Greisen, E. W. Representations of celestial coordinates in FITS. Astronomy & Astrophysics, 395(3):1077–1122, 2002. doi:10.1051/0004-6361:20021327.
- ChanONeil1975
Chan, F. K. and O'Neill, E. M. Feasibility study of a quadrilateralized spherical cube earth data base. Tech. Rep. EPRF 2-75 (CSC), Computer Sciences Corporation, System Sciences Division, Silver Spring, Md, 1975. URL: https://archive.org/details/ADA010232.
- Danielsen1989
Danielsen, J. The area under the geodesic. Survey Review, 30(232):61–66, 1989. doi:10.1179/sre.1989.30.232.61.
- Deakin2004
Deakin, R. E. The standard and abridged Molodensky coordinate transformation formulae. Technical Report, Department of Mathematical and Geospatial Sciences, RMIT University, Melborne, Australia, 2004. URL: http://www.mygeodesy.id.au/documents/Molodensky%20V2.pdf.
- EberHewitt1979
Eber, L. E. and Hewitt, R. P. Conversion algorithms for the CalCOFI station grid. California Cooperative Oceanic Fisheries Investigations Reports, 20:135–137, 1979. URL: http://www.calcofi.org/publications/calcofireports/v20/Vol_20_Eber___Hewitt.pdf.
- Engsager2007
Engsager, K. E. and Poder, K. A highly accurate world wide algorithm for the transverse Mercator mapping (almost). In Proc. XXIII Intl. Cartographic Conf. (ICC2007), Moscow, 2.1.2. August 2007.
- Evenden1995
Evenden, G. I. Cartographic Projection Procedures for the UNIX Environment — A User's Manual. 1995. URL: https://pubs.usgs.gov/of/1990/of90-284/ofr90-284.pdf.
- Evenden2005
Evenden, G. I. libproj4: A Comprehensive Library of Cartographic Projection Functions (Preliminary Draft). 2005. URL: https://github.com/OSGeo/PROJ/blob/master/docs/old/libproj.pdf.
- EversKnudsen2017
Evers, K. and Knudsen, T. Transformation pipelines for PROJ.4. In FIG Working Week 2017 Proceedings. Helsinki, Finland, 2017. URL: http://www.fig.net/resources/proceedings/fig_proceedings/fig2017/papers/iss6b/ISS6B_evers_knudsen_9156.pdf.
- Goode1919
Goode, J. P. Studies in projections: adapting the homolographic projection to the portrayal of the earth's entire surface. Bul. Geog. SOC.Phila., XWIJ(3):103–113, 1919.
- Goode1925
Goode, J. P. The homolosine projection: a new device for portraying the earth's surface entire. Annals of the Association of American Geographers, 3(15):119–125, 1925. doi:10.1080/00045602509356949.
- Helmert1880
Helmert, F. R. Mathematical and Physical Theories of Higher Geodesy. Volume 1. Teubner, Leipzig, 1880. doi:10.5281/zenodo.32050.
- Hensley2002
Hensley, S., Chapin, E., Freedman, A., and Michel, T. Improved processing of AIRSAR data based on the GeoSAR processor. In AIRSAR Earth Science and Application Workshop. Pasadena, California, 2002. Jet Propulsion Laboratory. URL: https://airsar.jpl.nasa.gov/documents/workshop2002/papers/T3.pdf.
- Hakli2016
Häkli, P., Lidberg, M., Jivall, L., Nørbech, T., Tangen, O., Weber, M., Pihlak, P., Aleksejenko, I., and Paršeliunas, E. The NKG2008 GPS campaign – final transformation results and a new common Nordic reference frame. Journal of Geodetic Science, 6(1):1–33, 2016. doi:10.1515/jogs-2016-0001.
- NTF_88
IGN. Grille de parametres de transformation de coordonnees - GR3DF97A - notice d'utilisation. Technical Report, Service de Geodesie et Nivellement, Institut Geographique National, 1997. URL: https://geodesie.ign.fr/contenu/fichiers/documentation/algorithmes/notice/NTG_88.pdf.
- IOGP2018
IOGP. Geomatics guidance note 7, part 2: coordinate conversions & transformations including formulas. IOGP Publication 373-7-2, International Association For Oil And Gas Producers, 2018. URL: https://www.iogp.org/bookstore/product/coordinate-conversions-and-transformation-including-formulas/.
- IOGP2019
IOGP. Geomatics guidance note 7, part 2: coordinate conversions & transformations including formulas. IOGP Publication 373-7-2, International Association For Oil And Gas Producers, 2019. URL: https://www.iogp.org/wp-content/uploads/2019/09/373-07-02.pdf.
- ISO19111
ISO. Geographic information – Referencing by coordinates. Standard, International Organization for Standardization, Geneva, CH, January 2019. URL: http://docs.opengeospatial.org/as/18-005r5/18-005r5.html.
- Jenny2015
Jenny, B., Šavrič, B., and Patterson, T. A compromise aspect-adaptive cylindrical projection for world maps. International Journal of Geographical Information Science, 29(6):935–952, 2015. URL: http://www.cartography.oregonstate.edu/pdf/2015_Jenny_etal_ACompromiseAspect-adaptiveCylindricalProjectionForWorldMaps.pdf, doi:10.1080/13658816.2014.997734.
- JimenezShaw2023
Jimenez Shaw, J., Hernando, J., and Strecha, C. Site calibration with proj and wkt2. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-4/W7-2023:75–81, 2023. URL: https://isprs-archives.copernicus.org/articles/XLVIII-4-W7-2023/75/2023/, doi:10.5194/isprs-archives-XLVIII-4-W7-2023-75-2023.
- Karney2011
Karney, C. F. F. Geodesics on an ellipsoid of revolution. ArXiv e-prints, 2011. arXiv:1102.1215.
- Karney2011tm
Karney, C. F. F. Transverse Mercator with an accuracy of a few nanometers. J. Geod., 85(8):475–485, August 2011. arXiv:1002.1417, doi:10.1007/s00190-011-0445-3.
- Karney2013
Karney, C. F. F. Algorithms for geodesics. Journal of Geodesy, 87(1):43–55, 2013. doi:10.1007/s00190-012-0578-z.
- Komsta2016
Komsta, Ł. ATPOL geobotanical grid revisited – a proposal of coordinate conversion algorithms. Annales UMCS Sectio E Agricultura, 71(1):31–37, 2016.
- Krueger1912
Krüger, J. H. L. Konforme Abbildung des Erdellipsoids in der Ebene. New Series 52, Royal Prussian Geodetic Institute, Potsdam, 1912. doi:10.2312/GFZ.b103-krueger28.
- LambersKolb2012
Lambers, M. and Kolb, A. Ellipsoidal cube maps for accurate rendering of planetary-scale terrain data. In Bregler, C., Sander, P., and Wimmer, M., editors, Pacific Graphics Short Papers. The Eurographics Association, 2012. doi:10.2312/PE/PG/PG2012short/005-010.
- ONeilLaubscher1976
O'Neill, E. M. and Laubscher, R. E. Extended studies of a quadrilateralized spherical cube earth data base. Tech. Rep. EPRF 3-76 (CSC), Computer Sciences Corporation, System Sciences Division, Silver Spring, Md, 1976. URL: https://archive.org/details/DTIC_ADA026294.
- Patterson2014
Patterson, T., Šavrič, B., and Jenny, B. Introducing the Patterson cylindrical projection. Cartographic Perspectives, 2014. doi:10.14714/CP78.1270.
- Poder1998
Poder, K. and Engsager, K. Some conformal mappings and transformations for geodesy and topographic cartography. National Survey and Cadastre Publications, National Survey and Cadastre, Copenhagen, Denmark, 1998.
- Rittri2012
Rittri, M. New omerc approximations of Denmark System 34. e-mail, 2012. URL: https://lists.osgeo.org/pipermail/proj/2012-June/005926.html.
- Ruffhead2016
Ruffhead, A. C. Introduction to multiple regression equations in datum transformations and their reversibility. Survey Review, 50(358):82–90, 2016. doi:10.1080/00396265.2016.1244143.
- Snyder1987
Snyder, J. P. Map projections — A working manual. Professional Paper 1395, U.S. Geological Survey, 1987. doi:10.3133/pp1395.
- Snyder1988
Snyder, J. P. New equal-area map projections for noncircular regions. The American Cartographer, 15(4):341–356, 1988. doi:10.1559/152304088783886784.
- Snyder1992
Snyder, J. P. An equal-area map projection for polyhedral globes. Cartographica, 29(1):10–21, 1992. doi:10.3138/27H7-8K88-4882-1752.
- Snyder1993
Snyder, J. P. Flattening the Earth. University of Chicago Press, 1993.
- Steers1970
Steers, J. A. An introduction to the study of map projections. University of London Press, 15th edition, 1970.
- Tobler2018
Tobler, W. A new companion for Mercator. Cartography and Geographic Information Science, 45(3):284–285, 2018. doi:10.1080/15230406.2017.1308837.
- Verey2017
Verey, M. Theoretical analysis and practical consequences of adopting a model ATPOL grid as a conical projection defining the conversion of plane coordinates to the WGS 84 ellipsoid. Fragmenta Floristica et Geobotanica Polonica, 24(2):469–488, 2017. URL: http://bomax.botany.pl/pubs-new/#article-4279.
- Vincenty1975
Vincenty, T. Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Survey Review, 23(176):88–93, 1975. doi:10.1179/sre.1975.23.176.88.
- WeberMoore2013
Weber, E. D. and Moore, T. J. Corrected conversion algorithms for the CalCOFI station grid and their implementation in several computer languages. California Cooperative Oceanic Fisheries Investigations Reports, 54:1–10, 2013. URL: http://calcofi.org/publications/calcofireports/v54/Vol_54_Weber.pdf.
- Zajac1978
Zajaç, A. Atlas of distribution of vascular plants in Poland (ATPOL). Taxon, 27(5/6):481–484, 1978. doi:10.2307/1219899.
- Savric2015
Šavrič, B., Patterson, T., and Jenny, B. The Natural Earth II world map projection. International Journal of Cartography, 1(2):123–133, 2015. URL: https://www.researchgate.net/publication/290447301_The_Natural_Earth_II_world_map_projection, doi:10.1080/23729333.2015.1093312.
- Savric2018
Šavrič, B., Patterson, T., and Jenny, B. The Equal Earth map projection. International Journal of Geographical Information Science, 33(3):454–465, 2018. URL: https://www.researchgate.net/publication/326879978_The_Equal_Earth_map_projection, doi:10.1080/13658816.2018.1504949.